OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 87*x^4/4! + 881*x^5/5! +...
where
A(x) = 1 + x*A(x) + x^2*A(2*x)^(1/2)/2! + x^3*A(3*x)^(1/3)/3! + x^4*A(4*x)^(1/4)/4! +...
Related expansions begin:
A(2*x)^(1/2) = 1 + x + 5*x^2/2! + 37*x^3/3! + 473*x^4/4! + 9881*x^5/5! +...
A(3*x)^(1/3) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1387*x^4/4! + 44341*x^5/5! +...
A(4*x)^(1/4) = 1 + x + 9*x^2/2! + 121*x^3/3! + 3057*x^4/4! + 131921*x^5/5! +...
A(5*x)^(1/5) = 1 + x + 11*x^2/2! + 181*x^3/3! + 5711*x^4/4! + 310601*x^5/5! +...
A(6*x)^(1/6) = 1 + x + 13*x^2/2! + 253*x^3/3! + 9577*x^4/4! + 628681*x^5/5! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/m!*subst(A, x, m*x+x*O(x^n))^(1/m))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2011
STATUS
approved