login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196561
E.g.f. satisfies: A(x) = 1 + Sum{n>=1} x^n * A(n*x)^(1/n) / n!.
1
1, 1, 3, 13, 87, 881, 13983, 358401, 15066943, 1031686513, 113292940383, 19641727327289, 5313784519456383, 2223596389445643993, 1429685952797008548463, 1404762001155914382481537, 2099828629077697954958843007
OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 87*x^4/4! + 881*x^5/5! +...
where
A(x) = 1 + x*A(x) + x^2*A(2*x)^(1/2)/2! + x^3*A(3*x)^(1/3)/3! + x^4*A(4*x)^(1/4)/4! +...
Related expansions begin:
A(2*x)^(1/2) = 1 + x + 5*x^2/2! + 37*x^3/3! + 473*x^4/4! + 9881*x^5/5! +...
A(3*x)^(1/3) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1387*x^4/4! + 44341*x^5/5! +...
A(4*x)^(1/4) = 1 + x + 9*x^2/2! + 121*x^3/3! + 3057*x^4/4! + 131921*x^5/5! +...
A(5*x)^(1/5) = 1 + x + 11*x^2/2! + 181*x^3/3! + 5711*x^4/4! + 310601*x^5/5! +...
A(6*x)^(1/6) = 1 + x + 13*x^2/2! + 253*x^3/3! + 9577*x^4/4! + 628681*x^5/5! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/m!*subst(A, x, m*x+x*O(x^n))^(1/m))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A125281.
Sequence in context: A174278 A352121 A001831 * A244755 A002725 A324028
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2011
STATUS
approved