login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048174 Number of labeled chains with n edges. 4
1, 1, 7, 73, 1051, 19381, 436087, 11585953, 354981571, 12322179901, 477938035807, 20485584143113, 961567521142411, 49054912287659461, 2702571588828034567, 159911968233095867953, 10114120854154243738771, 680943323845807848142861, 48622150270026820216099567, 3670113810844512283440027673 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of labeled series-parallel posets on n nodes that are not a nontrivial ordinal sum.

Let ( T, < ) and ( U, < ) be posets with T and U disjoint. Their ordinal sum is ( T union U, < ) where x<y if x<y and both in T or both in U, or x in T and y in U. Note ordinal sum is not commutative.

REFERENCES

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39, page 133, h(n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..100

Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.

R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299

Index entries for sequences related to posets

FORMULA

Reference gives generating functions (see PARI code for one example).

A048172(n) = A058349(n) + a(n), n>1.

A053554(n) = A058349(n) + A058350(n) (n>=2).

a(n)=sum(k=1..n-1, (n+k-1)!*sum(j=1..k, (-1)^(j)/(k-j)!*((sum(l=1..j, sum(i=2*l..n+l-1, (binomial(-l+i-1,l-1)*(-1)^(n-i-1)*stirling1(n+j-i-1,j-l))/(l!*(n+j-i-1)!))))+((-1)^(n-1)*stirling1(n+j-1,j))/(n+j-1)!))). - Vladimir Kruchinin, Feb 19 2012

a(n) ~ (5-sqrt(5)) * n^(n-1) / (2*5^(3/4)*exp(n)*(2-sqrt(5)+log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Mar 09 2014

MAPLE

with(gfun): f := series(ln(1+x)-x^2/(1+x), x, 30):

egf := seriestoseries(f, 'revogf'):

t := series(egf/(1+egf), x, 21):

seriestolist(t, 'Laplace');

MATHEMATICA

lim = 20; Drop[ CoefficientList[ InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x), {x, 0, lim}], y], y], 1]*Range[lim]! (* Jean-François Alcover, Sep 21 2011, after g.f. *)

max = 18; S053554 = InverseSeries[ Series[ Log[1+x] - x^2/(1+x), {x, 0, max}], x]; Drop[ CoefficientList[ Series[ S053554 / (1+S053554), {x, 0, max}], x]* Range[0, max]!, 1] (* Jean-François Alcover, Nov 29 2011, after Maple *)

PROG

(Maxima)

a(n):=if n=1 then 1 else (sum((n+k-1)!*sum((-1)^(j)/(k-j)!*((sum(sum((binomial(-l+i-1, l-1)*(-1)^(n-i-1)*stirling1(n+j-i-1, j-l))/(l!*(n+j-i-1)!), i, 2*l, n+l-1), l, 1, j))+((-1)^(n-1)*stirling1(n+j-1, j))/(n+j-1)!), j, 1, k), k, 1, n-1)); /* Vladimir Kruchinin, Feb 19 2012 */

(PARI) x='x+O('x^66); s=serreverse(log(1+x)-x^2/(1+x)); Vec(serlaplace(s/(1+s))) \\ Joerg Arndt, Mar 11 2014

CROSSREFS

Sequence in context: A250917 A112939 A058350 * A258379 A134281 A215612

Adjacent sequences:  A048171 A048172 A048173 * A048175 A048176 A048177

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Joerg Arndt, Feb 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:26 EST 2016. Contains 278939 sequences.