OFFSET
1,2
COMMENTS
a(n,m)= R_n^m(a=0,b=10) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n) = product(x-10*j,j=0..n-1), n >= 1, E(0,x) := 1, are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the Bell transform of the sequence (-1)^n*A051262(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
REFERENCES
Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
FORMULA
a(n, m) = a(n-1, m-1) - 10*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1. E.g.f. for m-th column of signed triangle: (((log(1+10*x))/10)^m)/m!.
EXAMPLE
{1}; {-10,1}; {200,-30,1}; {-6000,1100,-60,1}; ... E(3,x) = 200*x-30*x^2+x^3.
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> (-1)^n*n!*10^n, 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
rows = 9;
t = Table[(-1)^n*n!*10^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved