login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277394
Lagrange inversion, or reversion, for divided power series with odd powers only.
0
1, -1, 10, -1, -280, 56, -1, 15400, -4620, 126, 120, -1, -1401400, 560560, -36036, -17160, 792, 220, -1, 190590400, -95295200, 10090080, 3203200, -126126, -360360, -50050, 1716, 2002, 364, -1
OFFSET
1,3
COMMENTS
Coefficients for partition polynomials for compositional inversion order-by-order of odd functions, e.g.f.s, or formal Taylor series f(x) = a1 x + a3 x^3/3! + a5 x^5/5! + ... .
The compositional inverse of f(x) is g(x)
= a1^(-1) [1] x
+ a1^(-4) [-1 a3] x^3/3!
+ a1^(-7) [10 a3^2 - 1 a1 a5] x^5/5!
+ a1^(-10)[-280 a3^3 + 56 a1 a3 a5 - a1^2 a7] x^7/7!
+ a1^(-13)[15400 a3^4 - 4620 a1 a3^2 a5 + a1^2 (126 a5^2 + 120 a3 a7) - a1^3 a9] * x^9/9! ... .
MATHEMATICA
rows[nn_] := With[{s = InverseSeries[x + Sum[a[k] x^(2k+1)/(2k+1)!, {k, nn}] + O[x]^(2nn+2)]}, Table[(2n-1)! Coefficient[s, x^(2n-1) Product[a[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n-1]]]}]];
rows[5] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)
CROSSREFS
Cf. A133437, A134264, A134685, A133932, A145271, A176740 for other inversion formulas.
Sequence in context: A131367 A048176 A127616 * A191549 A285647 A287975
KEYWORD
sign,easy,tabf
AUTHOR
Tom Copeland, Oct 12 2016
EXTENSIONS
Corrected and extended by Andrey Zabolotskiy, Mar 07 2024
STATUS
approved