login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287975 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 389", based on the 5-celled von Neumann neighborhood. 4
1, 10, 1, 1100, 1, 111010, 1, 11110010, 1, 1111101000, 1, 111111001100, 1, 11111110100000, 1, 1111111100110000, 1, 111111111010110000, 1, 11111111110011000000, 1, 1111111111101000000000, 1, 111111111111001100000000, 1, 11111111111110101100000000, 1100001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Initialized with a single black (ON) cell at stage zero.

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

Robert Price, Table of n, a(n) for n = 0..126

Robert Price, Diagrams of first 20 stages

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

S. Wolfram, A New Kind of Science

Wolfram Research, Wolfram Atlas of Simple Programs

Index entries for sequences related to cellular automata

Index to 2D 5-Neighbor Cellular Automata

Index to Elementary Cellular Automata

MATHEMATICA

CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];

code = 389; stages = 128;

rule = IntegerDigits[code, 2, 10];

g = 2 * stages + 1; (* Maximum size of grid *)

a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)

ca = a;

ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

PrependTo[ca, a];

(* Trim full grid to reflect growth by one cell at each stage *)

k = (Length[ca[[1]]] + 1)/2;

ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

CROSSREFS

Cf. A287976, A287977, A287978.

Sequence in context: A127616 A191549 A285647 * A288365 A288064 A288592

Adjacent sequences:  A287972 A287973 A287974 * A287976 A287977 A287978

KEYWORD

nonn,easy

AUTHOR

Robert Price, Jun 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 05:30 EST 2021. Contains 349627 sequences. (Running on oeis4.)