login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277392
a(n) = n!*LaguerreL(n, -3*n).
11
1, 4, 62, 1626, 59928, 2844120, 165100752, 11331597942, 897635712384, 80602042275756, 8090067511468800, 897561658361441106, 109072492644378442752, 14407931244544181001216, 2055559499598438969956352, 314997663481165477898736750, 51601245736595962597616222208
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Laguerre Polynomial
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(n, k) * 3^k * n^k / k!.
a(n) ~ sqrt(1/2+5/(2*sqrt(21))) * (5+sqrt(21))^n * exp(n*(sqrt(21)-5)/2) * n^n/2^n.
MATHEMATICA
Table[n!*LaguerreL[n, -3*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k]*3^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, binomial(n, k)*3^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
(Magma) [Factorial(n)*(&+[Binomial(n, k)*3^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 12 2016
STATUS
approved