login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277419
a(n) = n!*LaguerreL(n, -5*n).
11
1, 6, 142, 5676, 318744, 23046370, 2038090320, 213094791840, 25714702990720, 3517403388684030, 537798502938028800, 90890936781714193300, 16825134146527678233600, 3385560150770468257273050, 735772370353606135149107200, 171753027520961356975091493000
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Laguerre Polynomial
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(n, k) * 5^k * n^k / k!.
a(n) ~ sqrt(1/2 + 7/(6*sqrt(5))) * ((7 + 3*sqrt(5))/2)^n * exp((-7 + 3*sqrt(5))*n/2) * n^n.
Equivalently, a(n) ~ phi^(4*n + 2) * n^n / (sqrt(3) * 5^(1/4) * exp(n/phi^4)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
MATHEMATICA
Table[n!*LaguerreL[n, -5*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, binomial(n, k)*5^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
(Magma) [Factorial(n)*(&+[Binomial(n, k)*5^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 14 2016
STATUS
approved