OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
Eric Weisstein's World of Mathematics, Laguerre Polynomial
Wikipedia, Laguerre polynomials
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(n, k) * 5^k * n^k / k!.
a(n) ~ sqrt(1/2 + 7/(6*sqrt(5))) * ((7 + 3*sqrt(5))/2)^n * exp((-7 + 3*sqrt(5))*n/2) * n^n.
Equivalently, a(n) ~ phi^(4*n + 2) * n^n / (sqrt(3) * 5^(1/4) * exp(n/phi^4)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
MATHEMATICA
Table[n!*LaguerreL[n, -5*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, binomial(n, k)*5^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
(Magma) [Factorial(n)*(&+[Binomial(n, k)*5^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 14 2016
STATUS
approved