login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277382
a(n) = n!*LaguerreL(n, -3).
18
1, 4, 23, 168, 1473, 14988, 173007, 2228544, 31636449, 490102164, 8219695239, 148262469336, 2860241078817, 58736954622492, 1278727896354687, 29406849577341552, 712119108949808193, 18108134430393657636, 482306685868464422391, 13425231879291031821576
OFFSET
0,2
COMMENTS
For m > 0, n!*LaguerreL(n, -m) ~ exp(2*sqrt(m*n) - n - m/2) * n^(n + 1/4) / (sqrt(2)*m^(1/4)) * (1 + (3+24*m+4*m^2)/(48*sqrt(m*n))).
LINKS
Oskar Perron, Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters, Journal für die reine und angewandte Mathematik (1921), vol. 151, p. 63-78.
Eric Weisstein's World of Mathematics, Laguerre Polynomial
FORMULA
E.g.f.: exp(3*x/(1-x))/(1-x).
a(n) = Sum_{k=0..n} 3^k*(n-k)!*binomial(n, k)^2.
a(n) ~ exp(2*sqrt(3*n)-n-3/2) * n^(n+1/4) / (sqrt(2) * 3^(1/4)) * (1 + 37/(16*sqrt(3*n))).
D-finite with recurrence a(n) = 2*(n+1)*a(n-1) - (n-1)^2*a(n-2).
Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(3*n))) = exp(-3/2).
a(n) = n! * A160613(n)/A160614(n). - Alois P. Heinz, Jun 28 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 3^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020
MATHEMATICA
Table[n!*LaguerreL[n, -3], {n, 0, 20}]
CoefficientList[Series[E^(3*x/(1-x))/(1-x), {x, 0, 20}], x] * Range[0, 20]!
Table[Sum[Binomial[n, k]^2 * 3^k * (n-k)!, {k, 0, n}], {n, 0, 20}]
PROG
(PARI) for(n=0, 30, print1(n!*(sum(k=0, n, binomial(n, k)*(3^k/k!))), ", ")) \\ G. C. Greubel, May 09 2018
(Magma) [Factorial(n)*((&+[Binomial(n, k)*(3^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 09 2018
CROSSREFS
Column k=3 of A289192.
Sequence in context: A317057 A053525 A375435 * A208676 A317276 A113869
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 12 2016
STATUS
approved