login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277372
a(n) = Sum_{k=1..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.
5
0, 1, 10, 141, 2584, 58745, 1602576, 51165205, 1874935168, 77644293201, 3588075308800, 183111507687581, 10230243235200000, 621111794820235849, 40722033570202507264, 2867494972696071121125, 215840579093024990396416, 17294837586403146090259745, 1469799445329208661211021312
OFFSET
0,3
FORMULA
a(n) = n!*LaguerreL(n, -n) - n^n.
a(n) = (-1)^n*KummerU(-n, 1, -n) - n^n.
a(n) = n^n*(hypergeom([-n, -n], [], 1/n) - 1) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
MAPLE
a := n -> add(binomial(n, n-k)*n^(n-k)*n!/(n-k)!, k=1..n):
seq(a(n), n=0..18);
# Alternatively:
A277372 := n -> n!*LaguerreL(n, -n) - n^n:
seq(simplify(A277372(n)), n=0..18);
PROG
(PARI) a(n) = sum(k=1, n, binomial(n, n-k)*n^(n-k)*n!/(n-k)!); \\ Michel Marcus, Oct 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 11 2016
STATUS
approved