|
|
A343689
|
|
a(1)=0, a(2)=1, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
|
|
2
|
|
|
0, 1, 10, 141, 2548, 56197, 1463670, 43966297, 1496317768, 56904041481, 2391466059970, 110064342800101, 5505608606065020, 297412929070311181, 17255455494684113518, 1070135653599485349297, 70646208593060717167120, 4946304737167849687047697, 366097196759013937558696698
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
This sequence is one of the two "basis" sequences for sequences having the form s(a,b,1)=a, s(a,b,2)=b, s(n)=(4*n-2)*s(a,b,n-1) + s(a,b,n-2), the second being A343688. s(a,b,n) = a*A343688(n) + b*a(n).
Of specific interest is s(3,19,n) and s(1,7,n) which produce the odd terms of A340737 and A340738 respectively and whose quotient converges to e.
a(n) mod n = 1 for even n and n-2 for odd n (empirical).
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..366
|
|
FORMULA
|
a(1)=0, a(1)=1, a(n) = (4*n-2)*a(n-1) + a(n-2).
|
|
EXAMPLE
|
a(4)=14*10+1, a(5)=18*141+10...
|
|
MAPLE
|
e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc
for n from 1 to 20 do print(e(0, 1, n)) od
|
|
MATHEMATICA
|
RecurrenceTable[{a[1]==0, a[2]==1, a[n]==(4n-2)a[n-1]+a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Dec 17 2021 *)
|
|
CROSSREFS
|
Cf. A340737, A340738, A343688.
Sequence in context: A093471 A324448 A277310 * A277372 A181162 A245988
Adjacent sequences: A343686 A343687 A343688 * A343690 A343691 A343692
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gary Detlefs, Apr 26 2021
|
|
STATUS
|
approved
|
|
|
|