The number field F of degree n whose discriminant is positive and of minimal value:
n = 2, F = Q[x]/(x^2  x  1), d = 5;
n = 3, F = Q[x]/(x^3  x^2  2x + 1), d = 49;
n = 4, F = Q[x]/(x^4  x^3  x^2 + x + 1), d = 117;
n = 5, F = Q[x]/(x^5  x^3  x^2 + x + 1), d = 1609;
n = 6, F = Q[x]/(x^6  2x^5 + 3x^3  2x  1), d = 28037;
n = 7, F = Q[x]/(x^7  x^6 + x^5  x^3 + x^2  x  1), d = 612233;
n = 8, F = Q[x]/(x^8  2x^7 + 4x^5  4x^4 + 3x^2  2x + 1), d = 1257728.
