login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343688
a(1)=1, a(2)=0, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
1
1, 0, 1, 14, 253, 5580, 145333, 4365570, 148574713, 5650204664, 237457170601, 10928680052310, 546671459786101, 29531187508501764, 1713355546952888413, 106257575098587583370, 7014713312053733390833, 491136189418859924941680, 36351092730307688179075153
OFFSET
1,4
COMMENTS
This sequence is one of the two "basis" sequences for sequences having the form s(a,b,1)=a, s(a,b,2)=b, s(n) = (4*n-2)*s(a,b,n-1) + s(a,b,n-2), the second being A343689. s(a,b,n) = a*a(n) + b*A343689(n).
Of specific interest is s(3,19,n) and s(1,7,n) which produce the odd terms of A340737 and A340738 respectively and whose quotient converges to e.
It is of interest to note that a(n)*A343689(n+1) - a(n+1)*A343689(n) = (-1)^(n+1), a(n)*A343689(n+2) - a(n+2)*A343689(n) = (4*n+6)*(-1)^(n+1) and a(n)*A343689(n+3) - a(n+3)*A343689(n) =((4*n+8)^2-3)* (-1)^(n+1)
a(n) mod n = n-6 for even n > 4 and 13 for odd n > 13 (empirical).
FORMULA
a(1)=1, a(2)=0, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
EXAMPLE
a(4)=14*1+0, a(5)=18*14+1, ...
MAPLE
e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc;
for n from 1 to 20 do print(e(1, 0, n)) od
MATHEMATICA
a[1]=1; a[2]=0; a[n_]:=a[n]=(4n-2)a[n-1]+a[n-2]; Array[a, 20] (* Giorgos Kalogeropoulos, Apr 27 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Detlefs, Apr 26 2021
STATUS
approved