Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 17 2021 13:06:31
%S 0,1,10,141,2548,56197,1463670,43966297,1496317768,56904041481,
%T 2391466059970,110064342800101,5505608606065020,297412929070311181,
%U 17255455494684113518,1070135653599485349297,70646208593060717167120,4946304737167849687047697,366097196759013937558696698
%N a(1)=0, a(2)=1, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
%C This sequence is one of the two "basis" sequences for sequences having the form s(a,b,1)=a, s(a,b,2)=b, s(n)=(4*n-2)*s(a,b,n-1) + s(a,b,n-2), the second being A343688. s(a,b,n) = a*A343688(n) + b*a(n).
%C Of specific interest is s(3,19,n) and s(1,7,n) which produce the odd terms of A340737 and A340738 respectively and whose quotient converges to e.
%C a(n) mod n = 1 for even n and n-2 for odd n (empirical).
%H Harvey P. Dale, <a href="/A343689/b343689.txt">Table of n, a(n) for n = 1..366</a>
%F a(1)=0, a(1)=1, a(n) = (4*n-2)*a(n-1) + a(n-2).
%e a(4)=14*10+1, a(5)=18*141+10...
%p e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc
%p for n from 1 to 20 do print(e(0,1,n)) od
%t RecurrenceTable[{a[1]==0,a[2]==1,a[n]==(4n-2)a[n-1]+a[n-2]},a,{n,20}] (* _Harvey P. Dale_, Dec 17 2021 *)
%Y Cf. A340737, A340738, A343688.
%K nonn
%O 1,3
%A _Gary Detlefs_, Apr 26 2021