login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277381
a(n) = exp(-1) * Sum_{k>=0} H_n(k)/k!, where H_n(x) is n-th Hermite polynomial.
5
1, 2, 6, 28, 156, 984, 7112, 57488, 508688, 4887840, 50639200, 561416640, 6621963712, 82719611264, 1089925195904, 15094182365440, 219035852333312, 3321573144437248, 52511336993334784, 863594855161338880, 14746060593172585472, 260971042697438779392
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hermite Polynomial
FORMULA
E.g.f.: exp(exp(2*x)-x^2-1).
a(n) ~ 2^n * n^n * exp(n/LambertW(n) - LambertW(n)^2 / 4 - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Jun 29 2022
MAPLE
g := exp(exp(2*x)-x^2-1): ser := series(g, x, 32):
seq(n!*coeff(ser, x, n), n=0..21); # Peter Luschny, Oct 19 2016
MATHEMATICA
Table[Sum[HermiteH[n, k]/k!, {k, 0, Infinity}]/E, {n, 0, 20}] (* or *)
Table[SeriesCoefficient[Exp[Exp[2 x] - x^2 - 1], {x, 0, n}] n!, {n, 0, 20}]
With[{nmax = 50}, CoefficientList[Series[Exp[Exp[2*x] - x^2 - 1], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
Table[Sum[Binomial[n, k] * 2^k * BellB[k] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 13 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(exp(exp(2*x)-x^2-1))) \\ G. C. Greubel, Jul 12 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(2*x) -x^2 -1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
CROSSREFS
Sequence in context: A295792 A004984 A326928 * A184695 A086633 A354311
KEYWORD
nonn
AUTHOR
STATUS
approved