login
A277380
a(n) = Sum_{k>=1} H_n(k-1)/2^k, where H_n(x) is n-th Hermite polynomial.
3
1, 2, 10, 92, 1068, 15352, 265752, 5368400, 123919248, 3217983008, 92851377312, 2947037232064, 102040223376576, 3827536020146048, 154615082607931776, 6691872388083371264, 308938595472492867840, 15153942107317778727424, 787050616613300039649792
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Hermite Polynomial
FORMULA
a(n) ~ c * 2^n * n! / (log(2))^n, where c = 1/(2 * log(2) * exp(log(2)^2/4)) = 0.639705404891769467944095575437073306645289161842121830191257596548619914238... - Vaclav Kotesovec, Jul 13 2018, updated Apr 21 2024
MATHEMATICA
Table[Sum[HermiteH[n, k - 1]/2^k, {k, 1, Infinity}], {n, 0, 20}]
PROG
(PARI) for(n=0, 40, print1(if(n==0, 1, ceil(sum(k=1, 15*n, polhermite(n, k-1)/2^k))), ", ")) \\ G. C. Greubel, Jul 13 2018
(PARI) nmax = 40; p = floor(2*log(nmax!*(2/log(2))^nmax)/log(10)); default(realprecision, p); a(n) = round(suminf(k=1, polhermite(n, k-1)/2^k));
for(n=0, nmax, print1(a(n), ", ")); \\ Michel Marcus and Vaclav Kotesovec, Jul 13 2018
CROSSREFS
Sequence in context: A086587 A082472 A095937 * A108528 A181136 A182952
KEYWORD
nonn
AUTHOR
STATUS
approved