login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181136
G.f.: A(x) = Sum_{n>=0} x^n/[Sum_{k=0..n} C(n,k)^3*(-x)^k].
1
1, 1, 2, 10, 92, 1264, 26138, 753322, 28451978, 1385043022, 84971475986, 6393154081582, 580295829204452, 62818032904371952, 8005929383232314294, 1187186361565313907994, 203034917331580351972520
OFFSET
0,3
COMMENTS
Compare the g.f. of this sequence to the identity:
(1-x)/(1-2*x) = Sum_{n>=0} x^n/[Sum_{k=0..n} C(n,k)*(-x)^k].
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n/hypergeom([-n,-n,-n],[1,1],x). - Robert Israel, Dec 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 92*x^4 + 1264*x^5 +...
which equals the series:
A(x) = 1 + x/(1-x) + x^2/(1-2^3*x+x^2) + x^3/(1-3^3*x+3^3*x^2-x^3) + x^4/(1-4^3*x+6^3*x^2-4^3*x^3+x^4) + x^5/(1-5^3*x+10^3*x^2-10^3*x^3+5^3*x^4-x^5) +...
MAPLE
G:= add(x^n/hypergeom([-n, -n, -n], [1, 1], x), n=0..50):
S:= series(G501, x, 51):
seq(coeff(S, x, n), n=0..50); # Robert Israel, Dec 24 2017
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/sum(k=0, m, binomial(m, k)^3*(-x)^k+x*O(x^n))), n)}
CROSSREFS
Cf. A178324.
Sequence in context: A095937 A277380 A108528 * A182952 A108209 A111773
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2011
STATUS
approved