login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A181133
a(n) = n + A003056(n).
1
2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85
OFFSET
1,1
COMMENTS
Obtained starting with a triangle with 1's and a trailing 2, and accumulating a partial sum along rows and columns:
2; # 2
1,2; # 3,5
1,1,2; # 6,7,9
1,1,1,2; # 10,11,12,14
1,1,1,1,2; # 15,16,17,18,20
1,1,1,1,1,2;
LINKS
FORMULA
a(n) = 2 + Sum_{k=1..n-1} A042974(k). - R. J. Mathar, Oct 08 2010
G.f.: (2*x-1)/(1-x)^2 + Theta_2(0,sqrt(x))/(x^(1/8)*(2-2*x)) where Theta_2 is a Jacobi theta function. - Robert Israel, Dec 24 2017
MAPLE
A003056:= [seq(n$(n+1), n=1..20)]:
A003056+[$1..nops(A003056)]; # Robert Israel, Dec 24 2017
MATHEMATICA
Array[# + Floor[(Sqrt[1 + 8 #] - 1)/2] &, 74] (* Michael De Vlieger, Dec 24 2017 *)
Accumulate[Flatten[Table[Join[PadRight[{}, n, 1], {2}], {n, 0, 15}]]] (* Harvey P. Dale, Aug 14 2022 *)
PROG
(PARI) a(n) = n + floor((sqrt(1+8*n)-1)/2) \\ Iain Fox, Dec 25 2017
(Python)
from math import isqrt
def A181133(n): return n+(isqrt((n<<3)+1)-1>>1) # Chai Wah Wu, Feb 10 2023
CROSSREFS
Sequence in context: A175140 A039144 A183864 * A039105 A187328 A065000
KEYWORD
nonn,easy
AUTHOR
Craig Michoski (michoski(AT)google.com), Oct 05 2010
EXTENSIONS
Definition re-fitted to something precise, sequence extended beyond a(15), and comment added by R. J. Mathar, Oct 24 2010
STATUS
approved