OFFSET
1,1
COMMENTS
Obtained starting with a triangle with 1's and a trailing 2, and accumulating a partial sum along rows and columns:
2; # 2
1,2; # 3,5
1,1,2; # 6,7,9
1,1,1,2; # 10,11,12,14
1,1,1,1,2; # 15,16,17,18,20
1,1,1,1,1,2;
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 2 + Sum_{k=1..n-1} A042974(k). - R. J. Mathar, Oct 08 2010
G.f.: (2*x-1)/(1-x)^2 + Theta_2(0,sqrt(x))/(x^(1/8)*(2-2*x)) where Theta_2 is a Jacobi theta function. - Robert Israel, Dec 24 2017
MAPLE
A003056:= [seq(n$(n+1), n=1..20)]:
MATHEMATICA
Array[# + Floor[(Sqrt[1 + 8 #] - 1)/2] &, 74] (* Michael De Vlieger, Dec 24 2017 *)
Accumulate[Flatten[Table[Join[PadRight[{}, n, 1], {2}], {n, 0, 15}]]] (* Harvey P. Dale, Aug 14 2022 *)
PROG
(PARI) a(n) = n + floor((sqrt(1+8*n)-1)/2) \\ Iain Fox, Dec 25 2017
(Python)
from math import isqrt
def A181133(n): return n+(isqrt((n<<3)+1)-1>>1) # Chai Wah Wu, Feb 10 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Craig Michoski (michoski(AT)google.com), Oct 05 2010
EXTENSIONS
Definition re-fitted to something precise, sequence extended beyond a(15), and comment added by R. J. Mathar, Oct 24 2010
STATUS
approved