login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13. 4
0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*s(n+1,n+1-j)*S(n+13-j,n), where s(n,k) and S(n,k) are the Stirling numbers of the first kind and the second kind, respectively. - Mircea Merca, Jan 25 2014
MAPLE
A181134 := proc(n) (bernoulli(14, n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
MATHEMATICA
Accumulate[Range[0, 20]^13] (* Harvey P. Dale, Oct 30 2017 *)
PROG
(Python)
A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
for _ in range(10**2):
....for i in range(14):
........m[i+1]+= m[i]
....A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
(Magma) [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
(Sage) [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14 for n in (0..30)] # G. C. Greubel, Jul 21 2021
CROSSREFS
Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Sequence in context: A017689 A013961 A036091 * A345635 A346348 A253713
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 05 2010 - Oct 18 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 19:01 EST 2024. Contains 370498 sequences. (Running on oeis4.)