login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253713 Second partial sums of 13th powers (A010801). 1
1, 8194, 1610710, 70322090, 1359736595, 15709845116, 126948964044, 787943896860, 3990804658005, 17193665419150, 64919238324226, 219638016608374, 677231901484775, 1928540559615320, 5126044286105240, 12827147639965656, 30432829026732009, 68861475279169530, 149343104993864110, 311744734708558690, 628618742162372731 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Luciano Ancora, Recurrence relation for the second partial sums of m-th powers

Luciano Ancora, Second partial sums of the m-th powers

FORMULA

a(n) = n*(n+1)*(n+2)*(6*n^12+72*n^11+297*n^10+330*n^9-765*n^8-1368*n^7+2059*n^6+2994*n^5-4091*n^4-2724*n^3+4069*n^2+66*n-735)/1260.

a(n) = 2*a(n-1)-a(n-2)+n^13.

MATHEMATICA

Table[n (n+1) (n+2) (6 n^12 + 72 n^11 + 297 n^10 + 330 n^9 - 765 n^8 - 1368 n^7 + 2059 n^6 + 2994 n^5 - 4091 n^4 -2724 n^3 + 4069 n^2 + 66 n - 735) / 1260, {n, 40}] (* Vincenzo Librandi, Jan 19 2015 *)

Nest[Accumulate, Range[30]^13, 2] (* Harvey P. Dale, Jul 24 2018 *)

PROG

(MAGMA) [n*(n+1)*(n+2)*(6*n^12+72*n^11+297*n^10+330*n^9-765*n^8-1368*n^7+2059*n^6+2994*n^5-4091*n^4-2724*n^3+4069*n^2+66*n-735)/1260: n in [1..30]]; // Vincenzo Librandi, Jan 19 2015

CROSSREFS

Sequence in context: A013961 A036091 A181134 * A168346 A045060 A320285

Adjacent sequences:  A253710 A253711 A253712 * A253714 A253715 A253716

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Jan 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 17:39 EST 2018. Contains 317275 sequences. (Running on oeis4.)