login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253711
Second partial sums of 11th powers (A008455).
0
1, 2050, 181246, 4554746, 57756371, 473755052, 2867080476, 13850340492, 56214660117, 198578979742, 626254969978, 1796939330902, 4759784085863, 11772194010488, 27434359794488, 60688711622904, 128214959758953, 260009617974234, 508294535087734, 961379452201234, 1764741869856955, 3152422588924004, 5492913065904980
OFFSET
1,2
COMMENTS
The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.
FORMULA
a(n) = n*(n+1)*(n+2)*(70*n^10 + 700*n^9 + 2310*n^8 + 1680*n^7 - 4655*n^6 - 4410*n^5 + 8240*n^4 + 4120*n^3 - 7819*n^2 + 202*n + 1382)/10920.
a(n) = 2*a(n-1) - a(n-2) + n^11.
G.f.: x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^14. - Vincenzo Librandi, Jan 15 2015
MATHEMATICA
Table[n (n + 1) (n + 2) (70 n^10 + 700 n^9 + 2310 n^8 + 1680 n^7 - 4655 n^6 - 4410 n^5 + 8240 n^4 + 4120 n^3 - 7819 n^2 + 202 n + 1382)/10920, {n, 1, 20}] (* Vincenzo Librandi, Jan 15 2015 *)
RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^11, a[1] == 1, a[2] == 2050}, a, {n, 1, 20}] (* Bruno Berselli, Jan 15 2015 *)
CROSSREFS
Cf. A008455.
Sequence in context: A045059 A224119 A183842 * A168176 A224728 A224721
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 10 2015
STATUS
approved