login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123094
Sum of first n 12th powers.
4
0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
OFFSET
0,3
LINKS
Bruno Berselli, A description of the recursive method in Formula lines (first formula): website Matem@ticamente (in Italian).
FORMULA
a(n) = n*A123095(n) - Sum_{i=0..n-1} A123095(i). - Bruno Berselli, Apr 27 2010
a(n) = n * (n+1) * (2*n+1) * (105*n^10 +525*n^9 +525*n^8 -1050*n^7 -1190*n^6 +2310*n^5 +1420*n^4 -3285*n^3 -287*n^2 +2073*n -691)/2730. - Bruno Berselli, Oct 03 2010
a(n) = (-1)*Sum_{j=1..12} j*Stirling1(n+1,n+1-j)*Stirling2(n+12-j,n). - Mircea Merca, Jan 25 2014
MAPLE
[seq(add(i^12, i=1..n), n=0..18)];
MATHEMATICA
Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0, 30]^12] (* Harvey P. Dale, Apr 26 2011 *)
PROG
(Sage) [bernoulli_polynomial(n, 13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
(Python)
A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
for _ in range(10**2):
for i in range(13):
m[i+1]+= m[i]
A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(Magma) [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
CROSSREFS
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), this sequence (m=12), A181134 (m=13).
Sequence in context: A017687 A013960 A036090 * A226695 A031562 A345507
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Sep 27 2006
STATUS
approved