login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017687
Numerator of sum of -12th powers of divisors of n.
3
1, 4097, 531442, 16781313, 244140626, 1088658937, 13841287202, 68736258049, 282430067923, 500122072361, 3138428376722, 1486382423891, 23298085122482, 28353876833297, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162, 2048500130460969
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017688(n) = zeta(12) (A013670).
Dirichlet g.f. of a(n)/A017688(n): zeta(s)*zeta(s+12).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017688(k) = zeta(13) (A013671). (End)
MATHEMATICA
Table[Numerator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
(Magma) [Numerator(DivisorSigma(12, n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
CROSSREFS
Cf. A017688 (denominator), A013670, A013671.
Sequence in context: A342685 A342686 A321809 * A013960 A036090 A123094
KEYWORD
nonn,frac
STATUS
approved