login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013671
Decimal expansion of zeta(13).
24
1, 0, 0, 0, 1, 2, 2, 7, 1, 3, 3, 4, 7, 5, 7, 8, 4, 8, 9, 1, 4, 6, 7, 5, 1, 8, 3, 6, 5, 2, 6, 3, 5, 7, 3, 9, 5, 7, 1, 4, 2, 7, 5, 1, 0, 5, 8, 9, 5, 5, 0, 9, 8, 4, 5, 1, 3, 6, 7, 0, 2, 6, 7, 1, 6, 2, 0, 8, 9, 6, 7, 2, 6, 8, 2, 9, 8, 4, 4, 2, 0, 9, 8, 1, 2, 8, 9, 2, 7, 1, 3, 9, 5, 3, 2, 6, 8, 1, 3
OFFSET
1,6
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(13) = sum {n >= 1} 1/n^13.
zeta(13) = 2^13/(2^13 - 1)*( sum {n even} n^9*p(n)*p(1/n)/(n^2 - 1)^14 ), where p(n) = n^6 + 21*n^4 + 35*n^2 + 7. (End)
zeta(13) = Sum_{n >= 1} (A010052(n)/n^(13/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(13/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(13) = Product_{k>=1} 1/(1 - 1/prime(k)^13). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0001227133475784891467518365263573957142751058955098451367026716208967...
MATHEMATICA
RealDigits[Zeta[13], 10, 120][[1]] (* Harvey P. Dale, Dec 24 2016 *)
PROG
(PARI) zeta(13) \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
STATUS
approved