OFFSET
1,1
COMMENTS
The rectangle R whose shape (i.e., length/width) is sqrt(3+x+sqrt(9+6x)), where x=sqrt(6), can be partitioned into rectangles of shapes sqrt(3) and sqrt(2) in a manner that matches the periodic continued fraction [sqrt(3), sqrt(2), sqrt(3), sqrt(2), ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,3,1,2,5,2,1,5,95,1,...] at A190257. For details, see A188635.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
2.271281562422994142313058068759726855455...
MATHEMATICA
PROG
(PARI) sqrt((3+sqrt(6)+sqrt(9+6*sqrt(6)))/2) \\ G. C. Greubel, Dec 26 2017
(Magma) [Sqrt((3+Sqrt(6)+Sqrt(9+6*Sqrt(6)))/2)]; // G. C. Greubel, Dec 26 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 06 2011
EXTENSIONS
Name corrected by T. D. Noe, Feb 25 2013
STATUS
approved