login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190253
Central coefficients of the Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-sqrt(1-2x-3x^2-4x^3))/(2*x^2*(1+x)) (A190252).
2
1, 2, 9, 48, 265, 1512, 8813, 52112, 311427, 1876290, 11376893, 69341868, 424445996, 2607388252, 16066200465, 99256947520, 614611513599, 3813391239444, 23702418040232, 147557273500400, 919907826138042, 5742264749678028, 35886019625941713
OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..122 from Vincenzo Librandi)
FORMULA
a(n) = T(2n,n), where T(n,k) = A190252(n,k).
MATHEMATICA
Table[Sum[Binomial[n+2i, i]((n+1)/(n+i+1))Sum[Binomial[i, j]Binomial[2n-j, n+2i], {j, 0, i}], {i, 0, n/2}], {n, 0, 22}]
PROG
(Maxima) makelist(sum(binomial(n+2*i, i)*(n+1)/(n+i+1)*sum(binomial(i, j)*binomial(2*n-j, n+2*i), j, 0, i), i, 0, n/2), n, 0, 22);
(PARI) a(n)=sum(i=0, n\2, binomial(n+2*i, i)*(n+1)/(n+i+1)*sum(j=0, i, binomial(i, j)*binomial(2*n-j, n+2*i))) \\ Charles R Greathouse IV, Jun 29 2011
CROSSREFS
Cf. A190252.
Sequence in context: A188818 A047139 A190315 * A174687 A047059 A153297
KEYWORD
nonn
AUTHOR
Emanuele Munarini, May 06 2011
STATUS
approved