login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174687 Central coefficients T(2n,n) of the Catalan triangle A033184. 4
1, 2, 9, 48, 275, 1638, 9996, 62016, 389367, 2466750, 15737865, 100975680, 650872404, 4211628008, 27341497800, 177996090624, 1161588834303, 7596549816030, 49772989810635, 326658445806000, 2147042307851595, 14130873926790390, 93115841412899760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A033184 is the Riordan array (c(x),xc(x)), c(x) the g.f. of A000108.

Number of standard Young tableaux of shape [2n,n].  Also the number of binary words with 2n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's.  The a(2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Alois P. Heinz, Aug 15 2012

Number of lattice paths from (0,0) to (2n,n) not above y=x. - Ran Pan, Apr 08 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..370

P. Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.

D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence,  Vol. 15 (2012), article 12.9.3.

Ran Pan, Exercise L, Project P

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.

FORMULA

a(n) = (n+1)*C(3n,n)/(2n+1) = (n+1)[x^(n+1)]Rev(x/c(x)) = (n+1)*A001764(n), c(x) the g.f. of A000108.

G.f.: A(x) = sin(arcsin((3^(3/2)*sqrt(x))/2)/3)/(sqrt(3)*sqrt(x)) + cos(arcsin((3^(3/2)* sqrt(x))/2)/3)/(2*sqrt(1-(27*x)/4)). [Vladimir Kruchinin, May 25 2012]

2*n*(2*n+1)*a(n) +3*(-13*n^2+10*n-1)*a(n-1) +9*(3*n-4)*(3*n-5)*a(n-2)=0. - R. J. Mathar, Nov 24 2012

a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(n+1). - Ilya Gutkovskiy, Nov 01 2017

MAPLE

a:= n-> binomial(3*n, n)*(n+1)/(2*n+1):

seq(a(n), n=0..25);  # Alois P. Heinz, Aug 15 2012

MATHEMATICA

Table[Binomial[3 n, n] (n + 1) / (2 n + 1), {n, 0, 25}] (* Vincenzo Librandi, Apr 08 2015 *)

PROG

(MAGMA) [(n+1)*Binomial(3*n, n)/(2*n+1): n in [0..25]]; // Vincenzo Librandi, Apr 08 2015

CROSSREFS

Column k=2 of A214776.

Sequence in context: A047139 A190315 A190253 * A047059 A153297 A153390

Adjacent sequences:  A174684 A174685 A174686 * A174688 A174689 A174690

KEYWORD

easy,nonn,changed

AUTHOR

Paul Barry, Mar 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:13 EST 2017. Contains 295089 sequences.