login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central coefficients of the Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-sqrt(1-2x-3x^2-4x^3))/(2*x^2*(1+x)) (A190252).
2

%I #13 Dec 27 2017 01:39:37

%S 1,2,9,48,265,1512,8813,52112,311427,1876290,11376893,69341868,

%T 424445996,2607388252,16066200465,99256947520,614611513599,

%U 3813391239444,23702418040232,147557273500400,919907826138042,5742264749678028,35886019625941713

%N Central coefficients of the Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-sqrt(1-2x-3x^2-4x^3))/(2*x^2*(1+x)) (A190252).

%H G. C. Greubel, <a href="/A190253/b190253.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..122 from Vincenzo Librandi)

%F a(n) = T(2n,n), where T(n,k) = A190252(n,k).

%t Table[Sum[Binomial[n+2i,i]((n+1)/(n+i+1))Sum[Binomial[i,j]Binomial[2n-j,n+2i],{j,0,i}],{i,0,n/2}],{n,0,22}]

%o (Maxima) makelist(sum(binomial(n+2*i,i)*(n+1)/(n+i+1)*sum(binomial(i,j)*binomial(2*n-j,n+2*i),j,0,i),i,0,n/2),n,0,22);

%o (PARI) a(n)=sum(i=0,n\2,binomial(n+2*i,i)*(n+1)/(n+i+1)*sum(j=0,i,binomial(i,j)*binomial(2*n-j,n+2*i))) \\ _Charles R Greathouse IV_, Jun 29 2011

%Y Cf. A190252.

%K nonn

%O 0,2

%A _Emanuele Munarini_, May 06 2011