The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190250 Positions of 1 in A190248. 5
 1, 4, 6, 7, 9, 12, 14, 15, 17, 19, 20, 22, 25, 27, 28, 30, 33, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 56, 59, 61, 62, 64, 67, 69, 70, 72, 74, 75, 77, 80, 82, 83, 85, 88, 90, 93, 95, 96, 98, 101, 103, 104, 106, 108, 109, 111, 114, 116, 117, 119, 122, 124, 125, 127, 129, 130, 132, 135, 137, 138, 140, 143, 145, 148, 150, 151, 153, 156, 158, 159, 161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n such that 1/4 < {n*phi} < 3/4, where phi is the golden ratio (1+sqrt(5))/2 and { } denotes fractional part. - Burghard Herrmann, Nov 14 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5500 Burghard Herrmann, Characterization of some golden ratio sequences Burghard Herrmann, How integer sequences find their way into areas outside pure mathematics, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 67-71. MATHEMATICA u = GoldenRatio; v = u^2; w=u^3; f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w] t = Table[f[n], {n, 1, 120}] (* A190248 *) Flatten[Position[t, 0]]      (* A190249 *) Flatten[Position[t, 1]]      (* A190250 *) Flatten[Position[t, 2]]      (* A190251 *) PROG (PARI) isok(n) = my(u=(1+sqrt(5))/2); floor(2*n+4*n*u)-floor(n*u)-floor(n+n*u)-floor(n+2*n*u) == 1; \\ Michel Marcus, Nov 14 2017 CROSSREFS Cf. A190248, A190249, A190251. Sequence in context: A343177 A085817 A177688 * A047508 A089960 A067888 Adjacent sequences:  A190247 A190248 A190249 * A190251 A190252 A190253 KEYWORD nonn AUTHOR Clark Kimberling, May 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:39 EDT 2021. Contains 343988 sequences. (Running on oeis4.)