CHARACTERIZATION OF SOME GOLDEN RATIO SEQUENCES

BURGHARD HERRMANN

Abstract. The integer sequences A190249, A190250 and A190251 of the On-Line Encyclopedia are characterized by conditions on the fractional part of multiples of the golden ratio.

Let $f: n \mapsto f(n)$ denote the sequence A190248 of [1] defined as follows

$$
f(n)=\lfloor n u+n v+n w\rfloor-\lfloor n u\rfloor-\lfloor n v\rfloor-\lfloor n w\rfloor
$$

where $u=\Phi=(\sqrt{5}+1) / 2$ is the golden ratio, $v=\Phi^{2}, w=\Phi^{3}$, and for $x \in \mathbb{R}$, floor $\lfloor x\rfloor$ is the greatest integer $\leq x$.

The fractional part $\{x\}$ is defined via $\{x\}=x-\lfloor x\rfloor$. For $k \in \mathbb{N}$ it holds $\lfloor k+x\rfloor=k+\lfloor x\rfloor$. Thus, $\lfloor n u+n v+n w\rfloor=\lfloor n u\rfloor+\lfloor n v\rfloor+\lfloor n w\rfloor+\lfloor\{n u\}+\{n v\}+\{n w\}\rfloor$ and, hence,

$$
f(n)=\lfloor\{n u\}+\{n v\}+\{n w\}\rfloor .
$$

Note that $\Phi^{2}=1+\Phi$ and $\Phi^{3}=\Phi(1+\Phi)=\Phi+(1+\Phi)=1+2 \Phi$. Thus, and by $\{k+x\}=\{x\}$,

$$
f(n)=\lfloor\{n \Phi\}+\{n \Phi\}+\{n 2 \Phi\}\rfloor .
$$

Moreover, by $\{k x\}=\{k\{x\}\}$,

$$
\begin{equation*}
f(n)=\lfloor 2\{n \Phi\}+\{2\{n \Phi\}\}\rfloor \tag{1}
\end{equation*}
$$

As $\{x\}<1 / 2$ implies $\{2\{x\}\}=2\{x\}$, and by (1), it holds

$$
\begin{equation*}
\{n \Phi\}<1 / 2 \text { implies } f(n)=\lfloor 4\{n \Phi\}\rfloor \tag{2}
\end{equation*}
$$

As $\{x\}>1 / 2$ implies $\{2\{x\}\}=2\{x\}-1$, and by (1), it holds

$$
\begin{equation*}
\{n \Phi\}>1 / 2 \text { implies } f(n)=\lfloor 4\{n \Phi\}\rfloor-1 \tag{3}
\end{equation*}
$$

By (2), the 1st and 2nd, and by (3), the 3rd and 4th of the following implications hold
$\{n \Phi\}<1 / 4 \Rightarrow f(n)=0$,
$1 / 4<\{n \Phi\}<1 / 2 \Rightarrow f(n)=1$,
$1 / 2<\{n \Phi\}<3 / 4 \Rightarrow f(n)=1$,
$\{n \Phi\}>3 / 4 \Rightarrow f(n)=2$.
The sequences A190249, A190250, A190251, resp., are defined as positions of $0,1,2$, resp., in A190248. We conclude that $\{n \Phi\}<1 / 4$ characterises A190249,
$1 / 4<\{n \Phi\}<3 / 4$ characterises A190250, $\{n \Phi\}>3 / 4$ characterises A190251.

References

[1] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A190248.
Burghard Herrmann, Venloer Str. 253, 50823 Köln, Germany
E-mail address: bfgh@netcologne.de

