login
A190185
Continued fraction of sqrt(1+x+sqrt(1+2*x)), where x=sqrt(2/3).
3
1, 1, 5, 1, 6, 1, 5, 1, 1, 40, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 1, 15, 1, 3, 1, 2, 2, 5, 1, 1, 1, 1, 4, 5, 65, 1, 13, 1, 3, 4, 1, 1, 1, 4, 13, 1, 1, 2, 1, 3, 2, 2, 1, 10, 1, 20, 4, 15, 6, 1, 3, 10, 1, 78, 1, 1, 11, 15, 1, 11, 179, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 2, 6, 1, 1, 7, 5, 1, 4, 1, 9, 1, 1, 2, 10, 3
OFFSET
1,3
COMMENTS
Equivalent to the periodic continued fraction [sqrt(2), sqrt(3), sqrt(2), sqrt(3),...]. For geometric interpretations of both continued fractions, see A190184 and A188635.
LINKS
MATHEMATICA
FromContinuedFraction[{2^(1/2), 3^(1/2), {2^(1/2), 3^(1/2)}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190185 *)
RealDigits[N[%%, 120]] (* A190186 *)
N[%%%, 40]
ContinuedFraction[Sqrt[1 + Sqrt[2/3] + Sqrt[1 + 2*Sqrt[2/3]]], 100] (* G. C. Greubel, Dec 28 2017 *)
PROG
(PARI) contfrac(sqrt(1 + sqrt(2/3) + sqrt(1 + 2*sqrt(2/3)))) \\ G. C. Greubel, Dec 28 2017
(Magma) ContinuedFraction(Sqrt(1 + Sqrt(2/3) + Sqrt(1 + 2*Sqrt(2/3)))); // G. C. Greubel, Dec 28 2017
CROSSREFS
Sequence in context: A375066 A200423 A176320 * A331189 A176123 A066805
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 05 2011
EXTENSIONS
Definition corrected by Bruno Berselli, May 13 2011
STATUS
approved