login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190183
Continued fraction of (1+x+sqrt(8+2x))/4, where x=sqrt(15).
2
2, 4, 1, 3, 10, 1, 3, 1, 1, 2, 66, 1, 4, 2, 1, 1, 48, 5, 1, 1, 2, 1, 1, 1, 8, 2, 1, 1, 4, 16, 2, 2, 1, 4, 1, 3, 1, 3, 1, 11, 1, 1, 8, 16, 1, 1, 1, 10, 1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 1, 30, 1, 1, 2, 1, 1, 8, 13, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 10, 1, 2, 7, 9, 2, 4, 7, 3, 1, 2, 2, 1, 2, 5, 4, 2, 3, 2, 3, 2, 1, 3
OFFSET
1,1
COMMENTS
Equivalent to the periodic continued fraction [r,1,1,r,1,1,...] where r=(1+sqrt(5))/2, the golden ratio. For geometric interpretations of both continued fractions, see A190182 and A188635.
LINKS
MATHEMATICA
r = (1 + 5^(1/2))/2;
FromContinuedFraction[{r, 1, 1, {r, 1, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190183 *)
RealDigits[N[%%, 120]] (* A190182 *)
N[%%%, 40]
ContinuedFraction[(1+Sqrt[15]+Sqrt[8+2Sqrt[15]])/4, 100] (* Harvey P. Dale, Apr 29 2013 *)
PROG
(PARI) contfrac((1+sqrt(15)+sqrt(8+2*sqrt(15)))/4) \\ G. C. Greubel, Dec 28 2017
(Magma) ContinuedFraction((1+Sqrt(15)+Sqrt(8+2*Sqrt(15)))/4); // G. C. Greubel, Dec 28 2017
CROSSREFS
Sequence in context: A069270 A079901 A121426 * A004515 A258219 A036560
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved