login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069270
Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).
4
1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
OFFSET
0,5
COMMENTS
For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
FORMULA
T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).
EXAMPLE
Rows start
1;
1, 1;
1, 2, 4;
1, 3, 9, 22;
1, 4, 15, 52, 140;
etc.
MAPLE
A069270 := proc(n, k)
binomial(n+3*k, k)*(n-k+1)/(n+2*k+1) ;
end proc: # R. J. Mathar, Oct 11 2015
MATHEMATICA
Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)
CROSSREFS
Columns include A000012, A000027, A055999.
Right-hand diagonals include A002293, A069271, A006632.
Cf. A130458 (row sums).
Sequence in context: A209573 A100075 A059836 * A079901 A121426 A190183
KEYWORD
nonn,tabl,easy,changed
AUTHOR
Henry Bottomley, Mar 12 2002
STATUS
approved