OFFSET
0,5
COMMENTS
For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
FORMULA
T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).
EXAMPLE
Rows start
1;
1, 1;
1, 2, 4;
1, 3, 9, 22;
1, 4, 15, 52, 140;
etc.
MAPLE
MATHEMATICA
Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Mar 12 2002
STATUS
approved