The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013674 Decimal expansion of zeta(16). 12
 1, 0, 0, 0, 0, 1, 5, 2, 8, 2, 2, 5, 9, 4, 0, 8, 6, 5, 1, 8, 7, 1, 7, 3, 2, 5, 7, 1, 4, 8, 7, 6, 3, 6, 7, 2, 2, 0, 2, 3, 2, 3, 7, 3, 8, 8, 9, 9, 0, 4, 7, 1, 5, 3, 1, 1, 5, 3, 1, 0, 5, 2, 0, 3, 5, 8, 8, 7, 8, 7, 0, 8, 7, 0, 2, 7, 9, 5, 3, 1, 5, 1, 7, 8, 6, 2, 8, 5, 6, 0, 4, 8, 4, 6, 3, 2, 2, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 REFERENCES Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811. LINKS Table of n, a(n) for n=1..99. Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. FORMULA zeta(16) = Sum_{n >= 1} (A010052(n)/n^8) = sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^8 ). - Mikael Aaltonen, Feb 20 2015 zeta(16) = 3617 * Pi^16 / 325641566250. - Vaclav Kotesovec, May 15 2019 zeta(16) = Product_{k>=1} 1/(1 - 1/prime(k)^16). - Vaclav Kotesovec, May 02 2020 EXAMPLE 1.000015282259408651871732571487636722... MATHEMATICA RealDigits[Zeta[16], 10, 96][[1]] (* Alonso del Arte, Mar 15 2015 *) PROG (PARI) zeta(16) \\ Michel Marcus, Feb 20 2015 CROSSREFS Sequence in context: A305574 A248259 A128666 * A155975 A152956 A099873 Adjacent sequences: A013671 A013672 A013673 * A013675 A013676 A013677 KEYWORD cons,nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 00:12 EST 2023. Contains 367696 sequences. (Running on oeis4.)