login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013674 Decimal expansion of zeta(16). 12
1, 0, 0, 0, 0, 1, 5, 2, 8, 2, 2, 5, 9, 4, 0, 8, 6, 5, 1, 8, 7, 1, 7, 3, 2, 5, 7, 1, 4, 8, 7, 6, 3, 6, 7, 2, 2, 0, 2, 3, 2, 3, 7, 3, 8, 8, 9, 9, 0, 4, 7, 1, 5, 3, 1, 1, 5, 3, 1, 0, 5, 2, 0, 3, 5, 8, 8, 7, 8, 7, 0, 8, 7, 0, 2, 7, 9, 5, 3, 1, 5, 1, 7, 8, 6, 2, 8, 5, 6, 0, 4, 8, 4, 6, 3, 2, 2, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,7
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(16) = Sum_{n >= 1} (A010052(n)/n^8) = sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^8 ). - Mikael Aaltonen, Feb 20 2015
zeta(16) = 3617 * Pi^16 / 325641566250. - Vaclav Kotesovec, May 15 2019
zeta(16) = Product_{k>=1} 1/(1 - 1/prime(k)^16). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.000015282259408651871732571487636722...
MATHEMATICA
RealDigits[Zeta[16], 10, 96][[1]] (* Alonso del Arte, Mar 15 2015 *)
PROG
(PARI) zeta(16) \\ Michel Marcus, Feb 20 2015
CROSSREFS
Sequence in context: A305574 A248259 A128666 * A155975 A152956 A099873
KEYWORD
cons,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 00:12 EST 2023. Contains 367696 sequences. (Running on oeis4.)