login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013673
Decimal expansion of zeta(15).
12
1, 0, 0, 0, 0, 3, 0, 5, 8, 8, 2, 3, 6, 3, 0, 7, 0, 2, 0, 4, 9, 3, 5, 5, 1, 7, 2, 8, 5, 1, 0, 6, 4, 5, 0, 6, 2, 5, 8, 7, 6, 2, 7, 9, 4, 8, 7, 0, 6, 8, 5, 8, 1, 7, 7, 5, 0, 6, 5, 6, 9, 9, 3, 2, 8, 9, 3, 3, 3, 2, 2, 6, 7, 1, 5, 6, 3, 4, 2, 2, 7, 9, 5, 7, 3, 0, 7, 2, 3, 3, 4, 3, 4, 7, 0, 1, 7, 5, 4
OFFSET
1,6
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(15) = Sum_{n >= 1} (A010052(n)/n^(15/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(15/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(15) = Product_{k>=1} 1/(1 - 1/prime(k)^15). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0000305882363070204935517285106450625876279487068581775065699328933322...
MATHEMATICA
RealDigits[Zeta[15], 10, 120][[1]] (* Harvey P. Dale, Sep 22 2011 *)
CROSSREFS
Sequence in context: A225233 A021331 A352484 * A188639 A103229 A181835
KEYWORD
cons,nonn
AUTHOR
STATUS
approved