|
|
A013673
|
|
Decimal expansion of zeta(15).
|
|
2
|
|
|
1, 0, 0, 0, 0, 3, 0, 5, 8, 8, 2, 3, 6, 3, 0, 7, 0, 2, 0, 4, 9, 3, 5, 5, 1, 7, 2, 8, 5, 1, 0, 6, 4, 5, 0, 6, 2, 5, 8, 7, 6, 2, 7, 9, 4, 8, 7, 0, 6, 8, 5, 8, 1, 7, 7, 5, 0, 6, 5, 6, 9, 9, 3, 2, 8, 9, 3, 3, 3, 2, 2, 6, 7, 1, 5, 6, 3, 4, 2, 2, 7, 9, 5, 7, 3, 0, 7, 2, 3, 3, 4, 3, 4, 7, 0, 1, 7, 5, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
zeta(15) = Sum_{n >= 1} (A010052(n)/n^(15/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(15/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(15) = Product_{k>=1} 1/(1 - 1/prime(k)^15). - Vaclav Kotesovec, May 02 2020
|
|
EXAMPLE
|
1.0000305882363070204935517285106450625876279487068581775065699328933322...
|
|
MATHEMATICA
|
RealDigits[Zeta[15], 10, 120][[1]] (* Harvey P. Dale, Sep 22 2011 *)
|
|
CROSSREFS
|
Sequence in context: A061035 A225233 A021331 * A188639 A103229 A181835
Adjacent sequences: A013670 A013671 A013672 * A013674 A013675 A013676
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|