Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 02 2020 04:20:17
%S 1,0,0,0,0,3,0,5,8,8,2,3,6,3,0,7,0,2,0,4,9,3,5,5,1,7,2,8,5,1,0,6,4,5,
%T 0,6,2,5,8,7,6,2,7,9,4,8,7,0,6,8,5,8,1,7,7,5,0,6,5,6,9,9,3,2,8,9,3,3,
%U 3,2,2,6,7,1,5,6,3,4,2,2,7,9,5,7,3,0,7,2,3,3,4,3,4,7,0,1,7,5,4
%N Decimal expansion of zeta(15).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F zeta(15) = Sum_{n >= 1} (A010052(n)/n^(15/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(15/2) ). - _Mikael Aaltonen_, Feb 23 2015
%F zeta(15) = Product_{k>=1} 1/(1 - 1/prime(k)^15). - _Vaclav Kotesovec_, May 02 2020
%e 1.0000305882363070204935517285106450625876279487068581775065699328933322...
%t RealDigits[Zeta[15],10,120][[1]] (* _Harvey P. Dale_, Sep 22 2011 *)
%K cons,nonn
%O 1,6
%A _N. J. A. Sloane_.