|
|
A013676
|
|
Decimal expansion of zeta(18).
|
|
5
|
|
|
1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, 4, 4, 2, 9, 9, 8, 7, 6, 3, 0, 0, 3, 9, 5, 4, 2, 6, 5, 0, 0, 4, 5, 6, 3, 8, 0, 0, 1, 9, 6, 8, 6, 6, 8, 9, 8, 9, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,7
|
|
REFERENCES
|
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
zeta(18) = Sum_{n >= 1} (A010052(n)/n^9) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^9 ). - Mikael Aaltonen, Mar 06 2015
zeta(18) = 43867*Pi^18/38979295480125 = A046988(9)*Pi^18/A002432(9). - Alonso del Arte, Feb 12 2016
zeta(18) = Product_{k>=1} 1/(1 - 1/prime(k)^18). - Vaclav Kotesovec, May 02 2020
|
|
EXAMPLE
|
1.0000038172932649998398564616446219397...
|
|
MATHEMATICA
|
RealDigits[Zeta[18], 10, 100][[1]] (* Alonso del Arte, Feb 07 2016 *)
|
|
PROG
|
(PARI) zeta(18) \\ Michel Marcus, Feb 12 2016
|
|
CROSSREFS
|
Sequence in context: A219995 A021266 A054399 * A199270 A131563 A016622
Adjacent sequences: A013673 A013674 A013675 * A013677 A013678 A013679
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|