login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013676 Decimal expansion of zeta(18). 5
1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, 4, 4, 2, 9, 9, 8, 7, 6, 3, 0, 0, 3, 9, 5, 4, 2, 6, 5, 0, 0, 4, 5, 6, 3, 8, 0, 0, 1, 9, 6, 8, 6, 6, 8, 9, 8, 9, 6, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,7

REFERENCES

Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

LINKS

Table of n, a(n) for n=1..99.

Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

zeta(18) = Sum_{n >= 1} (A010052(n)/n^9) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^9 ). - Mikael Aaltonen, Mar 06 2015

zeta(18) = 43867*Pi^18/38979295480125 = A046988(9)*Pi^18/A002432(9). - Alonso del Arte, Feb 12 2016

zeta(18) = Product_{k>=1} 1/(1 - 1/prime(k)^18). - Vaclav Kotesovec, May 02 2020

EXAMPLE

1.0000038172932649998398564616446219397...

MATHEMATICA

RealDigits[Zeta[18], 10, 100][[1]] (* Alonso del Arte, Feb 07 2016 *)

PROG

(PARI) zeta(18) \\ Michel Marcus, Feb 12 2016

CROSSREFS

Sequence in context: A219995 A021266 A054399 * A199270 A131563 A016622

Adjacent sequences: A013673 A013674 A013675 * A013677 A013678 A013679

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 12:09 EDT 2023. Contains 361570 sequences. (Running on oeis4.)