OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
MATHEMATICA
Array[Denominator[Total[Divisors[#]^-12]]&, 20] (* Harvey P. Dale, Dec 06 2012 *)
Table[Denominator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
PROG
(PARI) vector(20, n, denominator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
(Magma) [Denominator(DivisorSigma(12, n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved