login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017691
Numerator of sum of -14th powers of divisors of n.
3
1, 16385, 4782970, 268451841, 6103515626, 39184481725, 678223072850, 4398314962945, 22876797237931, 10000610353201, 379749833583242, 213999516991295, 3937376385699290, 5556342524323625, 5838586426737844, 72061992352890881, 168377826559400930, 374836322743499435
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017692(n) = zeta(14) (A013672).
Dirichlet g.f. of a(n)/A017692(n): zeta(s)*zeta(s+14).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017692(k) = zeta(15) (A013673). (End)
MATHEMATICA
Table[Numerator[DivisorSigma[14, n]/n^14], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 14)/n^14)) \\ G. C. Greubel, Nov 06 2018
(Magma) [Numerator(DivisorSigma(14, n)/n^14): n in [1..20]]; // G. C. Greubel, Nov 06 2018
CROSSREFS
Cf. A017692 (denominator), A013672, A013673.
Sequence in context: A160868 A351313 A230635 * A013962 A036092 A282597
KEYWORD
nonn,frac
STATUS
approved