|
|
A013954
|
|
a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
|
|
93
|
|
|
1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
|
|
LINKS
|
|
|
FORMULA
|
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
|
|
MAPLE
|
numtheory[sigma][6](n) ;
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) [DivisorSigma(6, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|