login
A013954
a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
93
1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Inverse Mobius transform of A001014. - R. J. Mathar, Oct 13 2011
FORMULA
G.f.: Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).
Dirichlet g.f.: zeta(s)*zeta(s-6).
Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)
MAPLE
A013954 := proc(n)
numtheory[sigma][6](n) ;
end proc: # R. J. Mathar, Oct 13 2011
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[6, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
PROG
(Sage) [sigma(n, 6)for n in range(1, 24)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=sigma(n, 6) \\ Charles R Greathouse IV, Apr 28, 2011
(Magma) [DivisorSigma(6, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
KEYWORD
nonn,mult,easy
STATUS
approved