login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343508 a(n) = Sum_{k=1..n} gcd(k, n)^6. 3
1, 65, 731, 4162, 15629, 47515, 117655, 266372, 532905, 1015885, 1771571, 3042422, 4826821, 7647575, 11424799, 17047816, 24137585, 34638825, 47045899, 65047898, 86005805, 115152115, 148035911, 194717932, 244203145, 313743365, 388487763, 489680110, 594823349 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = Sum_{d|n} phi(n/d) * d^6.

a(n) = Sum_{d|n} mu(n/d) * d * sigma_5(d).

G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 57*x^k + 302*x^(2*k) + 302*x^(3*k) + 57*x^(4*k) + x^(5*k))/(1 - x^k)^7.

Dirichlet g.f.: zeta(s-1) * zeta(s-6) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021

Sum_{k=1..n} a(k) ~ Pi^6 * n^7 / (6615*zeta(7)). - Vaclav Kotesovec, May 20 2021

Multiplicative with a(p^e) = p^(e-1)*(p^(5*e+6) - p^(5*e) - p + 1)/(p^5-1). - Amiram Eldar, Nov 22 2022

MATHEMATICA

a[n_] := Sum[GCD[k, n]^6, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)

f[p_, e_] := p^(e-1)*(p^(5*e+6) - p^(5*e) - p + 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)

PROG

(PARI) a(n) = sum(k=1, n, gcd(k, n)^6);

(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*d^6);

(PARI) a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 5));

(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+57*x^k+302*x^(2*k)+302*x^(3*k)+57*x^(4*k)+x^(5*k))/(1-x^k)^7))

CROSSREFS

Column 6 of A343510.

Cf. A000010, A001160 (sigma_5(n)), A343520.

Sequence in context: A017675 A013954 A294301 * A116277 A220389 A196634

Adjacent sequences: A343505 A343506 A343507 * A343509 A343510 A343511

KEYWORD

nonn,mult

AUTHOR

Seiichi Manyama, Apr 17 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 21:04 EDT 2023. Contains 361552 sequences. (Running on oeis4.)