OFFSET
1,2
COMMENTS
Moebius transform of n^6. - Enrique Pérez Herrero, Sep 14 2010
a(n) is divisible by 504 = (2^3)*(3^3)*7 = A006863(3) except for n = 1, 2, 3 and 7. See Lugo. - Peter Bala, Jan 13 2024
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n=1..2000
Michael Lugo, A little number theory problem (2008)
Wikipedia, Jordan's totient function.
FORMULA
a(n) = Sum_{d|n} d^6*mu(n/d).
Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)).
Dirichlet generating function: zeta(s-6)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^7 / (7*zeta(7)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^6 = 1/zeta(7).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^6/(p^6-1)^2) = 1.0175973008... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A(x^n)/(1 - x^n)^7 = x + 63*x^2 + 728*x^3 + 4032*x^4 + 15624*x^5 + ..., where A(x) = x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6 is the 6th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022
MAPLE
with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/# ]&]/; (n>0)&&IntegerQ[n]
A069091[n_IntegerQ]:=JordanTotient[n, 6]; (* Enrique Pérez Herrero, Sep 14 2010 *)
f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, d^6*moebius(n/d)), ", "))
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Benoit Cloitre, Apr 05 2002
STATUS
approved