login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024004
a(n) = 1 - n^6.
8
1, 0, -63, -728, -4095, -15624, -46655, -117648, -262143, -531440, -999999, -1771560, -2985983, -4826808, -7529535, -11390624, -16777215, -24137568, -34012223, -47045880, -63999999, -85766120, -113379903, -148035888, -191102975, -244140624, -308915775, -387420488, -481890303
OFFSET
0,3
LINKS
FORMULA
From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 7*x - 42*x^2 - 322*x^3 - 287*x^4 - 63*x^5)/(1 - x)^7.
E.g.f.: (1 - x - 31*x^2 - 90*x^3 - 65*x^4 - 15*x^5 - x^6)*exp(x). (End)
Sum_{k>=2} -1/a(k) = 11/12 - Pi*tanh(sqrt(3)*Pi/2)/(2*sqrt(3)) = A339529. - Vaclav Kotesovec, Dec 08 2020
MATHEMATICA
Table[1-n^6, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
PROG
(Magma) [1-n^6: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(Maxima) A024004(n):=1-n^6 $ makelist(A024004(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Haskell)
a024004 = (1 -) . (^ 6) -- Reinhard Zumkeller, Mar 11 2014
(PARI) for(n=0, 50, print1(1-n^6, ", ")) \\ G. C. Greubel, May 11 2017
CROSSREFS
Cf. A001014.
a(n) = -A123866(n) for n > 0.
Sequence in context: A284953 A069091 A123866 * A284927 A321545 A201886
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, corrected Mar 01 2007
STATUS
approved