login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024002 a(n) = 1 - n^4. 5
1, 0, -15, -80, -255, -624, -1295, -2400, -4095, -6560, -9999, -14640, -20735, -28560, -38415, -50624, -65535, -83520, -104975, -130320, -159999, -194480, -234255, -279840, -331775, -390624, -456975, -531440, -614655, -707280, -809999, -923520, -1048575, -1185920, -1336335, -1500624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..630

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = -A123865(n) for n>0.

From G. C. Greubel, May 11 2017: (Start)

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

G.f.: (1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5.

E.g.f.: (1 - x - 7*x^2 - 6*x^3 - x^4)*exp(x). (End)

MATHEMATICA

Table[1 - n^4, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *)

CoefficientList[Series[(1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)

PROG

(MAGMA) [1-n^4: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011

(PARI) x='x+O('x^50); Vec((1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5) \\ G. C. Greubel, May 11 2017

CROSSREFS

Cf. A123865, .

Sequence in context: A033594 A059377 A123865 * A050149 A055815 A244855

Adjacent sequences:  A023999 A024000 A024001 * A024003 A024004 A024005

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrected by T. D. Noe, Nov 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)