

A024002


a(n) = 1  n^4.


5



1, 0, 15, 80, 255, 624, 1295, 2400, 4095, 6560, 9999, 14640, 20735, 28560, 38415, 50624, 65535, 83520, 104975, 130320, 159999, 194480, 234255, 279840, 331775, 390624, 456975, 531440, 614655, 707280, 809999, 923520, 1048575, 1185920, 1336335, 1500624
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..630
Index entries for linear recurrences with constant coefficients, signature (5,10,10,5,1).


FORMULA

a(n) = A123865(n) for n>0.
From G. C. Greubel, May 11 2017: (Start)
a(n) = 5*a(n1)  10*a(n2) + 10*a(n3)  5*a(n4) + a(n5).
G.f.: (1  5*x  5*x^2  15*x^3)/(1  x)^5.
E.g.f.: (1  x  7*x^2  6*x^3  x^4)*exp(x). (End)


MATHEMATICA

Table[1  n^4, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *)
CoefficientList[Series[(1  5*x  5*x^2  15*x^3)/(1  x)^5, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)


PROG

(MAGMA) [1n^4: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) x='x+O('x^50); Vec((1  5*x  5*x^2  15*x^3)/(1  x)^5) \\ G. C. Greubel, May 11 2017


CROSSREFS

Cf. A123865, .
Sequence in context: A033594 A059377 A123865 * A050149 A055815 A244855
Adjacent sequences: A023999 A024000 A024001 * A024003 A024004 A024005


KEYWORD

sign,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Corrected by T. D. Noe, Nov 08 2006


STATUS

approved



