This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024002 a(n) = 1 - n^4. 5
 1, 0, -15, -80, -255, -624, -1295, -2400, -4095, -6560, -9999, -14640, -20735, -28560, -38415, -50624, -65535, -83520, -104975, -130320, -159999, -194480, -234255, -279840, -331775, -390624, -456975, -531440, -614655, -707280, -809999, -923520, -1048575, -1185920, -1336335, -1500624 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..630 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = -A123865(n) for n>0. From G. C. Greubel, May 11 2017: (Start) a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). G.f.: (1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5. E.g.f.: (1 - x - 7*x^2 - 6*x^3 - x^4)*exp(x). (End) MATHEMATICA Table[1 - n^4, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *) CoefficientList[Series[(1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *) PROG (MAGMA) [1-n^4: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011 (PARI) x='x+O('x^50); Vec((1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5) \\ G. C. Greubel, May 11 2017 CROSSREFS Cf. A123865, . Sequence in context: A033594 A059377 A123865 * A050149 A055815 A244855 Adjacent sequences:  A023999 A024000 A024001 * A024003 A024004 A024005 KEYWORD sign,easy AUTHOR EXTENSIONS Corrected by T. D. Noe, Nov 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)