login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024002
a(n) = 1 - n^4.
5
1, 0, -15, -80, -255, -624, -1295, -2400, -4095, -6560, -9999, -14640, -20735, -28560, -38415, -50624, -65535, -83520, -104975, -130320, -159999, -194480, -234255, -279840, -331775, -390624, -456975, -531440, -614655, -707280, -809999, -923520, -1048575, -1185920, -1336335, -1500624
OFFSET
0,3
FORMULA
a(n) = -A123865(n) for n>0.
From G. C. Greubel, May 11 2017: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5.
E.g.f.: (1 - x - 7*x^2 - 6*x^3 - x^4)*exp(x). (End)
Sum_{k>=2} -1/a(k) = A256919 = 7/8 - Pi*coth(Pi)/4. - Vaclav Kotesovec, Dec 08 2020
MATHEMATICA
Table[1 - n^4, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *)
CoefficientList[Series[(1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)
PROG
(Magma) [1-n^4: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) x='x+O('x^50); Vec((1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5) \\ G. C. Greubel, May 11 2017
CROSSREFS
Cf. A123865.
Sequence in context: A059377 A370533 A123865 * A050149 A055815 A370535
KEYWORD
sign,easy
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved