login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370535
Expansion of g.f. A(x) satisfying A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.
6
1, 0, 15, -80, 480, -2832, 16555, -94350, 544050, -3048150, 17177355, -95672700, 530418150, -2927403000, 16080310800, -87976127220, 479790094275, -2607515196300, 14134142487950, -76415523881850, 412207249329390, -2219152192374700, 11925605885527275, -63987288706312050
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(X) = x + 15*x^3 - 80*x^4 + 480*x^5 - 2832*x^6 + 16555*x^7 - 94350*x^8 + 544050*x^9 - 3048150*x^10 + 17177355*x^11 - 95672700*x^12 + ...
where A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.
RELATED SERIES.
B(x) = A( x^2*(1 + 3*x)*A(x) )^(1/3) = A( x^3*(1 + 5*x)*A(x)^2 )^(1/5)
where B(x) is the g.f. of A370534, which begins
B(x) = x + x^2 + 4*x^3 - 20*x^4 + 100*x^5 - 500*x^6 + 2530*x^7 - 12290*x^8 + 63970*x^9 - 310770*x^10 + 1580415*x^11 - 7901235*x^12 + 39580710*x^13 + ...
B(x)^3 = A( x^2*(1 + 3*x)*A(x) ) = x^3 + 3*x^4 + 15*x^5 - 35*x^6 + 240*x^7 - 1392*x^8 + 8074*x^9 - 44550*x^10 + 262080*x^11 - 1413200*x^12 + ...
B(x)^5 = A( x^3*(1 + 5*x)*A(x)^2 ) = x^5 + 5*x^6 + 30*x^7 - 10*x^8 + 385*x^9 - 2139*x^10 + 13590*x^11 - 80910*x^12 + 515970*x^13 - 2952970*x^14 + ...
B(x)^15 = x^15 + 15*x^16 + 165*x^17 + 995*x^18 + 5805*x^19 + 16083*x^20 + 93075*x^21 - 82575*x^22 + 2166975*x^23 - 11141575*x^24 + 99995160*x^25 + ...
where B(x)^15 = A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); Ax = x*Ser(A);
A[#A] = polcoeff( subst(Ax, x, x^2*(1 + 3*x)*Ax )^5 - subst(Ax, x, x^3*(1 + 5*x)*Ax^2 )^3, #A+14); ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A024002 A050149 A055815 * A338414 A358917 A244855
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2024
STATUS
approved