login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370534
Expansion of g.f. A(x) = G( x*(1 + 3*x)*G(x)^2 )^(1/3) = G( x^2*(1 + 5*x)*G(x)^3 )^(1/5), where G(x) is the g.f. of A370533.
4
1, 1, -11, 45, -135, 297, -198, -1872, 15705, -103695, 556749, -2275131, 6904116, -15392760, 38895675, -278647283, 2238863647, -12869710817, 53512462775, -155088202345, 174598433696, 1545643834686, -15193843495341, 84540206058435, -303767647556085, 263679736843551
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 - 11*x^3 + 45*x^4 - 135*x^5 + 297*x^6 - 198*x^7 - 1872*x^8 + 15705*x^9 - 103695*x^10 + 556749*x^11 - 2275131*x^12 + ...
where A(x) = G( x*(1 + 3*x)*G(x)^2 )^(1/3) = G( x^2*(1 + 5*x)*G(x)^3 )^(1/5)
and G(x) is the g.f. of A370533, which begins
G(x) = x - 15*x^3 + 80*x^4 - 255*x^5 + 432*x^6 + 1020*x^7 - 12510*x^8 + 71595*x^9 - 354070*x^10 + 1570104*x^11 - 5622420*x^12 + ...
RELATED SERIES.
A(x)^3 = G( x*(1 + 3*x)*G(x)^2 ) = x^3 + 3*x^4 - 30*x^5 + 70*x^6 + 195*x^7 - 2391*x^8 + 11467*x^9 - 30645*x^10 + 11340*x^11 + ...
A(x)^5 = G( x^2*(1 + 5*x)*G(x)^3 ) = x^5 + 5*x^6 - 45*x^7 + 15*x^8 + 1110*x^9 - 6354*x^10 + 12315*x^11 + 64365*x^12 + ...
A(x)^15 = x^15 + 15*x^16 - 60*x^17 - 1180*x^18 + 6480*x^19 + 41688*x^20 - 480825*x^21 + 497475*x^22 + 16467975*x^23 + ...
where A(x)^15 = G( x*(1 + 3*x)*G(x)^2 )^5 = G( x^2*(1 + 5*x)*G(x)^3 )^3.
PROG
(PARI) {a(n) = my(A, G, V=[1]); for(i=1, n+1, V = concat(V, 0); G = x*Ser(V);
V[#V] = polcoeff( subst(G, x, x^2*(1 + 5*x)*G^3 )^3 - subst(G, x, x*(1 + 3*x)*G^2 )^5, #V+14); );
A = subst(G, x, x*(1 + 3*x)*G^2 )^(1/3); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2024
STATUS
approved