login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370438
Expansion of g.f. A(x) = G( x*(1 + 2*x)*G(x) )^(1/2) = G( x^2*(1 + 3*x)*G(x) )^(1/3), where G(x) is the g.f. of A370437.
5
1, 1, -2, 4, -5, 31, -45, -57, -66, 1124, 116, -8314, -21328, 76424, 229013, -537885, -3308391, 2165589, 36968501, 16926113, -402914677, -602853397, 3854818970, 11099464628, -31321810278, -161502827466, 188659370973, 2076430792115, 118544397194, -23981088656686
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 - 2*x^3 + 4*x^4 - 5*x^5 + 31*x^6 - 45*x^7 - 57*x^8 - 66*x^9 + 1124*x^10 + 116*x^11 - 8314*x^12 - 21328*x^13 + 76424*x^14 + 229013*x^15 + ...
where A(x) = G( x*(1 + 2*x)*G(x) )^(1/2) = G( x^2*(1 + 3*x)*G(x) )^(1/3)
and G(x) is the g.f. of A370437, which begins
G(x) = x - 3*x^3 + 10*x^4 - 15*x^5 + 84*x^6 - 161*x^7 - 174*x^8 + 612*x^9 + 1596*x^10 + 1926*x^11 - 38592*x^12 - 5895*x^13 + 234684*x^14 + ...
RELATED SERIES.
A(x)^2 = G( x*(1 + 2*x)*G(x) ) = x^2 + 2*x^3 - 3*x^4 + 4*x^5 + 2*x^6 + 36*x^7 + 8*x^8 - 368*x^9 + 207*x^10 + 1674*x^11 + 3699*x^12 + ...
A(x)^3 = G( x^2*(1 + 3*x)*G(x) ) = x^3 + 3*x^4 - 3*x^5 + x^6 + 15*x^7 + 39*x^8 + 88*x^9 - 684*x^10 + 36*x^11 + 3514*x^12 + 6807*x^13 + ...
A(x)^6 = x^6 + 6*x^7 + 3*x^8 - 16*x^9 + 45*x^10 + 162*x^11 + 321*x^12 - 1044*x^13 - 4257*x^14 + 12694*x^15 + 37275*x^16 + ...
where A(x)^6 = G( x*(1 + 2*x)*G(x) )^3 = G( x^2*(1 + 3*x)*G(x) )^2.
PROG
(PARI) {a(n) = my(A, G, V=[1]); for(i=1, n+1, V = concat(V, 0); G = x*Ser(V);
V[#V] = polcoeff( subst(G, x, x^2*(1 + 3*x)*G )^2 - subst(G, x, x*(1 + 2*x)*G )^3, #V+5); ); A = subst(G, x, x*(1 + 2*x)*G )^(1/2); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A199929 A126666 A036983 * A303006 A154775 A210418
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 08 2024
STATUS
approved