login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370436
Expansion of e.g.f. A(x) satisfying A(x) = Product_{n>=1} cosh(x^n*A(x)).
3
1, 1, 25, 1801, 251665, 60023281, 21783217897, 11244708818617, 7836581579364769, 7098342754565616481, 8108890187934052712761, 11407792409056590722072041, 19382875328830017602572089265, 39137558151287789768856541250641, 92642186419738783260791047129751305
OFFSET
0,3
COMMENTS
A related identity is sinh(x)/x = Product_{n>=1} cosh(x/2^n).
Motivated by the fixed point sr = Product_{n>=1} cosh(sr*(1/2)^n), where sr = sinh(sr)/sr = 1.3132837183534835944... (A133916).
The radius of convergence of e.g.f. A(x) is r = 0.536180023946684527...; A(x) evaluated at x = r satisfies (1) A(r) = 1 / [Sum_{n>=1} r^n * tanh(r^n * A(r))] and (2) A(r) = Product_{n>=1} cosh(r^n * A(r)), where A(r) = 1.726459616031644143... Note that r = 2/sqrt(d) where d is given in Vaclav Kotesovec's formula. - Paul D. Hanna, Mar 01 2024
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! satisfies the following formulas.
(1) A(x) = Product_{n>=1} cosh(x^n*A(x)).
(2) log(A(x)) = Sum_{n>=1} (-1)^(n-1)*A000182(n) * A(x)^(2*n) * x^(2*n)/((1-x^(2*n))*(2*n)!), where A000182 are the tangent numbers.
a(n) ~ c * d^n * (n-1)!^2, where d = 13.91357494878057309372... and c = 0.2556213529084458598... - Vaclav Kotesovec, Mar 01 2024
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 25*x^4/4! + 1801*x^6/6! + 251665*x^8/8! + 60023281*x^10/10! + 21783217897*x^12/12! + 11244708818617*x^14/14! + ...
where
A(x) = cosh(x*A(x)) * cosh(x^2*A(x)) * cosh(x^3*A(x)) * cosh(x^4*A(x)) * ...
RELATED SERIES.
log(A(x)) = x^2/2! + 22*x^4/4! + 1456*x^6/6! + 189232*x^8/8! + 43031296*x^10/10! + 15070050304*x^12/12! + 7582799641600*x^14/14! + ...
where the logarithm of A(x) may be written as
log(A(x)) = A(x)^2*x^2/((1-x^2)*2!) - 2*A(x)^4*x^4/((1-x^4)*4!) + 16*A(x)^6*x^6/((1-x^6)*6!) - 272*A(x)^8*x^8/((1-x^8)*8!) +- ...
in which the coefficients (A000182) are taken from the series for
log(cosh(x)) = x^2/2! - 2*x^4/4! + 16*x^6/6! - 272*x^8/8! + 7936*x^10/10! - 353792*x^12/12! + ... + (-1)^(n-1)*A000182(n)*x^(2*n)/(2*n)! + ...
SPECIFIC VALUES.
A(1/2) = sr = sinh(sr)/sr = 1.3132837183534835944... (A133916).
A(1/3) = 1.0732039012742053466040583737125980229145749599...
A(1/4) = 1.0360440144515230397124814819872716708635571534...
A(1/5) = 1.0218446382532843162980010372360052478618874316...
A(1/6) = 1.0147502698567245499165367962927287752921277594...
A(1/8) = 1.0080767433235165071886167844759835649060174961...
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = Product[Cosh[x^k*A[x]], {k, 1, 2*nmax}] + O[x]^(2*nmax + 1) // Normal, 2*nmax + 1]; Table[(CoefficientList[A[x], x]*Range[0, 2*nmax]!)[[2*j-1]], {j, 1, nmax}] (* Vaclav Kotesovec, Mar 01 2024 *)
PROG
(PARI) {a(n) = my(A=1); for(m=1, n+1, A=truncate(A);
A = prod(k=1, m, cosh(x^k*A +O(x^(2*m+1))) ) ; ); (2*n)!*polcoeff(A, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 29 2024
STATUS
approved