login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316911
Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).
3
0, 25, 1719, 143731, 64456699, 1846991851, 781688106621, 445837607665267, 611642484654021, 674842075634295726569, 9142845536119405749427, 38984536004906714808649, 80321414381403813427242343, 342487507476162248453574514441, 562411667990487545372378396727201
OFFSET
0,2
COMMENTS
As n goes to infinity, integral value K(n) goes to zero. Given a rational approximant r(n)=a(n)/c(n)/d(n)=p(n)/q(n) to irrational number log(2), the quality M(n) is defined as, M(n)=-log(|r(n)-log(2)|)/log(q(n)) (Cf. Beukers Link). For this approximation, we can easily measure M(n) over n=5,000..20,000, and estimate that M(n)~1.14... to the 99% confidence level (Cf. Histogram Link).
LINKS
F. Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
Bradley Klee, Quality Histogram.
FORMULA
Define G(x) = Sum_{n>0} A316911(n)/A316912(n)*x^n, and G^(k)(x) = d^k/dx^k G(x). Period G(x) satisfies a nonhomogeneous differential equation: -225+112*x = Sum_{j=0..5,k=0..3} M_{j,k} x^j G^(k)(x), with integer matrix M as in A190726.
EXAMPLE
{a(10),c(10),d(10)}={9142845536119405749427,307660953600,42872967012}.
r(10)=a(10)/c(10)/d(10)=9142845536119405749427/13190337914573262643200.
r(10)=0.693147180559945309417232121402...
log(2)=0.693147180559945309417232121458...
M(10)=-log(|r(10)-log(2)|)/log(13190337914573262643200)=1.27...
MATHEMATICA
FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
Numerator[FracData[5000]]
CROSSREFS
Integer Part: A190726. Denominators: A316912. Similar Pi approximation: A123178, A305997, A305998.
Sequence in context: A125826 A263967 A290881 * A212333 A187404 A370436
KEYWORD
nonn,frac
AUTHOR
Bradley Klee, Jul 16 2018
STATUS
approved