login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305998 Let K(n) = integral(t=-1,1, t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1) dt) and write K(n) = d(n)*Pi - b(n)/a(n) where a(n), b(n), d(n) are positive integers; sequence gives a(n). 5
1, 15, 7, 495, 2145, 69615, 33915, 245157, 2523675, 150225075, 60480225, 187751655, 26397882693, 7073942421, 221214302595, 26306570659215, 362711807574025, 315526198564395, 154309366568181825, 495353332454332275, 13575552922770178725 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Bradley Klee, Table of n, a(n) for n = 1..1000

Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.

MATHEMATICA

HermiteReduceRational[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol}, If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg = Length[cl] - 1; u = Total[c[#]*t^(2 #) & /@ Range[0, deg/2 - 1]]; v = Plus[Total[-c[#]*(m - 1)/(2*# + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@ MapThread[Equal, {cl, CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; Plus[ ReplaceAll[v/(m - 1)/den^(m - 1), sol[[1]]] /. t -> 1, HermiteReduceRational[ Expand@ReplaceAll[u+1/(m-1)*D[v, t], sol[[1]]], den, m - 1]]], 0]

Denominator[ HermiteReduceRational[ t^(2*#)*(1-t^2)^(2*#)*((1+I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]]&/@Range[20] (* Bradley Klee, Jun 18 2018 *)

Denominator@RecurrenceTable[ {64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n] -48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1] +6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2] -9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==0, a[1]==44, a[2]==45616/15}, a, {n, 1, 5000}] (* Bradley Klee, Jun 25 2018 *)

CROSSREFS

Cf. A123178, A305997.

Sequence in context: A131876 A325136 A126070 * A103241 A194707 A094501

Adjacent sequences:  A305995 A305996 A305997 * A305999 A306000 A306001

KEYWORD

nonn,frac

AUTHOR

Bradley Klee, Jun 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)