login
A305997
Define K(n) = Integral_{t=-1..1} t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1)dt and write K(n) = d(n)*Pi - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).
5
44, 45616, 1669568, 9778855936, 3618728790016, 10227537305460736, 439851024281337856, 283497572919345676288, 262217569855510830645248, 1411010811095175238386712576, 51605826449550157277271425024, 14612860454957563743068313616384
OFFSET
1,1
LINKS
Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
FORMULA
Define G(x) = Sum_{n>0} A305997(n)/A305998(n)*x^n, and G^(n)(x) = d^n/dx^n G(x). Period G(x) satisfies a nonhomogeneous differential equation: -1097712 + 4292640*x + 3901584*x^2 - 224352*x^3 = Sum_{m=0..9, n=0..5} M_{m,n} x^m G^(n)(x), with integer matrix M as in A123178.
MATHEMATICA
HermiteReduceRational[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol, c}, If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg = Length[cl] - 1; u = Total[c[#]*t^(2 #) & /@ Range[0, deg/2 - 1]]; v = Plus[Total[-c[#]*(m - 1)/(2*# + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@ MapThread[Equal, {cl, CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; Plus[ ReplaceAll[v/(m - 1)/den^(m - 1), sol[[1]]] /. t -> 1, HermiteReduceRational[ Expand@ReplaceAll[u+1/(m-1)*D[v, t], sol[[1]]], den, m - 1]]], 0]
Numerator[ HermiteReduceRational[ t^(2*#)*(1-t^2)^(2*#)*((1+I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]]&/@Range[20] (* Bradley Klee, Jun 18 2018 *)
Numerator@RecurrenceTable[{64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n]-48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1]+6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2]-9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==0, a[1]==44, a[2]==45616/15}, a, {n, 1, 5000}] (* Bradley Klee, Jun 25 2018 *)
CROSSREFS
Sequence in context: A131484 A365646 A308325 * A277840 A172828 A115734
KEYWORD
nonn
AUTHOR
Bradley Klee, Jun 16 2018
STATUS
approved