login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305997
Define K(n) = Integral_{t=-1..1} t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1)dt and write K(n) = d(n)*Pi - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).
5
44, 45616, 1669568, 9778855936, 3618728790016, 10227537305460736, 439851024281337856, 283497572919345676288, 262217569855510830645248, 1411010811095175238386712576, 51605826449550157277271425024, 14612860454957563743068313616384
OFFSET
1,1
LINKS
Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
FORMULA
Define G(x) = Sum_{n>0} A305997(n)/A305998(n)*x^n, and G^(n)(x) = d^n/dx^n G(x). Period G(x) satisfies a nonhomogeneous differential equation: -1097712 + 4292640*x + 3901584*x^2 - 224352*x^3 = Sum_{m=0..9, n=0..5} M_{m,n} x^m G^(n)(x), with integer matrix M as in A123178.
MATHEMATICA
HermiteReduceRational[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol, c}, If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg = Length[cl] - 1; u = Total[c[#]*t^(2 #) & /@ Range[0, deg/2 - 1]]; v = Plus[Total[-c[#]*(m - 1)/(2*# + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@ MapThread[Equal, {cl, CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; Plus[ ReplaceAll[v/(m - 1)/den^(m - 1), sol[[1]]] /. t -> 1, HermiteReduceRational[ Expand@ReplaceAll[u+1/(m-1)*D[v, t], sol[[1]]], den, m - 1]]], 0]
Numerator[ HermiteReduceRational[ t^(2*#)*(1-t^2)^(2*#)*((1+I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]]&/@Range[20] (* Bradley Klee, Jun 18 2018 *)
Numerator@RecurrenceTable[{64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n]-48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1]+6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2]-9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==0, a[1]==44, a[2]==45616/15}, a, {n, 1, 5000}] (* Bradley Klee, Jun 25 2018 *)
CROSSREFS
Sequence in context: A131484 A365646 A308325 * A277840 A172828 A115734
KEYWORD
nonn
AUTHOR
Bradley Klee, Jun 16 2018
STATUS
approved